
AN11690
NXP NCI Android Porting Guidelines
Rev. 2.0 — 14 December 2020 Application note
333220 COMPANY PUBLIC

Document information
Information Content

Keywords Android, NFC, NXP, NCI, PN7120, PN7150

Abstract This note describes how to add support for an NXP NCI-based NFC
Controller to an Android system.

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

1 Revision history

Rev Date Description

2.0 20201214 Added support for Android R (PN7150 only)
Added troubleshooting guidelines about CTS/VTS testing

1.9 20200204 Added support for Android Q (PN7150 only)

1.8 20190710 Fixed confusing errors in Android Oreo guidelines

1.7 20181217 Fixed error in Android Pie installation guidelines (install script path)
Mention added about PN7150 derivative support of Android Pie and Oreo

1.6 20181008 Repositories moved back to GitHub
Added support for Android Pie (PN7150 only)

1.5 20180330 Repositories moved to CodeAurora
Added support for Android Oreo (PN7150 only)

1.4 20170530 Added description of the NFC Factory Test native application

1.3 20170512 Added support for Android Nougat
Added note about porting to other Android versions than referenced ones
Fixed typo about kernel driver repository address
Added information about sepolicy definition in the troubleshooting section

1.2 20160819 Added support for Android Marshmallow

1.1 20160525 Update for PN7150 support

1.0 20150602 First release

Revision history

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 2 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

2 Introduction

This document provides guidelines for the integration of NXP NCI-based NFC Controller
to an Android platform from software perspective.

It first explains how to install the required kernel driver, then it describes step by step
how to adapt the Android Open Source Project sources from the NXP-NCI Android NFC
package delivery. Figure 1 shows the architecture of the Android NFC stack.

NXP NCI HAL

PN5xx I2C Driver

NXP NCI NFC Controller

Kernel API

Nave libraries (C/C++)

Physical interface

Linux kernel drivers (I2C, GPIO…)

Other NCI HAL

NFC Controller Interface (libnfc-nci)

Java Nave Interface (JNI)

Android NFC API

NFC service
NXP extension

NXP extension

Android app using NFC App layer (Java)

JNI API

App framework (Java)

Linux kernel

NXP extension

Figure 1. Android NFC stack overview

• The pn5xx_I2c driver is the kernel module allowing to access NXP NCI-based NFC
Controller hardware resource.

• The NXP NCI HAL module is the implementation of NXP NFC Controller’s specific
Hardware Abstraction Layer.

• The libnfc-nci is the native library providing NFC functionality for which extension is
added to support NXP proprietary features (e.g. support for MIFARE Classic).

• The JNI is a glue code between Java and Native classes. Extension exposes related
additional interface.

• The NFC service is the application framework module providing access to NFC
functionality. Extension is delivered to support NXP proprietary features.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 3 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

3 Kernel driver

The NXP-NCI Android stack uses PN5xx I2C kernel mode driver to communicate with the
NXP NCI NFC Controller. It is available from the following repository: https://github.com/
NXPNFCLinux/nxp-pn5xx.

3.1 Driver details
The PN5xx I2C driver offers communication to the NFC Controller connected over I2C
physical interface. This is insured through the device node named /dev/pn544. This low-
level driver is compatible with a broad range of NXP’s NFC Controllers (e.g. PN544).

3.2 Installation instructions
The following instructions assume the driver being installed under the drivers/misc
kernel source sub-folder. Below instructions may have to be adapted accordingly in case
another path is chosen for the driver installation.

3.2.1 Getting the driver

Clone the nxp-pn5xx repository into the kernel directory:

$ cd drivers/misc
$ git clone https://github.com/NXPNFCLinux/nxp-pn5xx.git

This will create the sub-folder nxp-pn5xx containing the following files:

• pn5xx_i2c.c: driver implementation
• pn5xx_i2c.h: driver interface definition
• README.md: repository comments
• Makefile: driver related makefile
• Kconfig: driver related config file
• LICENSE: driver licensing terms
• sample_devicetree.txt: example of device tree definition

3.2.2 Including the driver to the kernel

Include the driver to the compilation by adding below line to the heading makefile
(drivers/misc/Makefile).

obj-y += nxp-pn5xx/

Include the driver config by adding below line to the heading configuration file (drivers/
misc/Kconfig).

source "drivers/misc/nxp-pn5xx/Kconfig"

3.2.3 Creating the device node

Two methods are supported for the creation of the /dev/pn544 device node: device tree
and platform data. Any of the two methods can be used, but of course the I2C address
(0x28 in the below examples) and GPIO assignments must be adapted to the hardware
integration in the platform.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 4 / 43

https://github.com/NXPNFCLinux/nxp-pn5xx
https://github.com/NXPNFCLinux/nxp-pn5xx

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

3.2.3.1 Device tree

Below is an example of definition to be added to the platform device tree file (.dts file
located for instance under arch/arm/boot/dts kernel sub-folder for ARM based platform).

&i2c{
 status = "okay";
 pn547: pn547@28 {
 compatible = "nxp,pn547";
 reg = <0x28>;
 clock-frequency = <400000>;
 interrupt-gpios = <&gpio2 17 0>;
 enable-gpios = <&gpio4 21 0>;
 };
};

3.2.3.2 Platform data

Below is an example of definition to be added to the platform definition file. The structure
pn544_i2c_platform_data being defined in the driver interface header file, pn5xx_i2c.h
must be included in the platform definition file, and pn5xx_i2c.h file must be copied to
include/linux kernel source sub-folder.

static struct pn544_i2c_platform_data nfc_pdata = {
 .irq_gpio = GPIO_TO_PIN(1,29),
 .ven_gpio = GPIO_TO_PIN(0,30),
 .firm_gpio = GPIO_UNUSED
 .clkreq_gpio = GPIO_UNUSED
};
static struct i2c_board_info __initdata nfc_board_info[] = {
 {
 I2C_BOARD_INFO("pn547", 0x28),
 .platform_data = &nfc_pdata,
 },
};

Then the declared nfc_board_info structure must be added to the platform using
dedicated procedure (platform specific).

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 5 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

3.2.4 Building the driver

Through menuconfig procedure include the driver to the build, as built-in (<*>) or
modularizes features (<M>):

Device Drivers --->
 Misc devices --->
 < > NXP PN5XX based driver

If <M> option is selected, build the driver and install the generated pn5xx_i2c.ko module.
Otherwise if built-in, rebuild the complete kernel, the driver will be included in the kernel
image.

If the device tree method was used in previous step, build the platform related device tree
and install generated dtb file.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 6 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4 AOSP adaptation

4.1 Android R
Below step-by-step procedure is based on NXP’s Android NFC delivery from https://
github.com/NXPNFCLinux/nxpnfc_android_r repository.

The current release is based on Android AOSP 11.0.0 version, porting on other R version
may requires minor adaptation of API (detected when compiling).

Pay attention that the AOSP adaptation of Android R is only delivered for PN7150
(and PN7150 derivatives like PN7150X) support.

4.1.1 Step 1: retrieving NXP-NCI NFC delivery

Clone repository into AOSP source directory:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android_r.git ${ANDROID_BUILD_TOP}/
vendor/nxp/nfc

4.1.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$ ${ANDROID_BUILD_TOP}/vendor/nxp/nfc/install_NFC.sh

This will:

• Patch the AOSP system/nfc implementation to add PN7150 specific support
• Patch the AOSP hardware/nxp/nfc implementation to add PN7150 specific support
• Patch the AOSP packages/apps/Nfc folder to add support for PN7150 extensions

feature
• Patch the AOSP frameworks/native definitions to add specific permissions

4.1.3 Step 3: updating configuration files

Adapt the libnfc-nci.conf and libnfc-nxp.conf files located in vendor/nxp/nfc/hw/pn7150/
conf sub-folder, created at Section 4.1.1, according to the integration specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 7 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_r
https://github.com/NXPNFCLinux/nxpnfc_android_r

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.1.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk), include specific
makefile

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

In the BoardConfig.mk makefile (e.g. device/brand/platform/BoardConfig.mk), include
specific makefile

-include vendor/nxp/nfc/BoardConfigNfc.mk

4.1.5 Step 5: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

4.1.6 Step 6: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 8 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.2 Android Q
Below step-by-step procedure is based on NXP’s Android NFC delivery from https://
github.com/NXPNFCLinux/nxpnfc_android_q repository.

The current release is based on Android AOSP 10.0.0 version, porting on other Q version
may requires minor adaptation of API (detected when compiling).

Pay attention that the AOSP adaptation of Android Q is only delivered for PN7150
(and PN7150 derivatives like PN7150X) support.

4.2.1 Step 1: retrieving NXP-NCI NFC delivery

Clone repository into AOSP source directory:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android_q.git ${ANDROID_BUILD_TOP}/
vendor/nxp/nfc

4.2.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$ ${ANDROID_BUILD_TOP}/vendor/nxp/nfc/install_NFC.sh

This will:

• Patch the AOSP system/nfc implementation to add PN7150 specific support
• Patch the AOSP hardware/nxp/nfc implementation to add PN7150 specific support
• Patch the AOSP packages/apps/Nfc folder to add support for PN7150 extensions

feature
• Patch the AOSP frameworks/native definitions to add specific permissions

4.2.3 Step 3: updating configuration files

Adapt the libnfc-nci.conf and libnfc-nxp.conf files located in vendor/nxp/nfc/hw/pn7150/
conf sub-folder, created at Section 4.3.2, according to the integration specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 9 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_q
https://github.com/NXPNFCLinux/nxpnfc_android_q

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.2.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk), include specific
makefile

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

In the BoardConfig.mk makefile (e.g. device/brand/platform/BoardConfig.mk), include
specific makefile

-include vendor/nxp/nfc/BoardConfigNfc.mk

4.2.5 Step 5: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

4.2.6 Step 6: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 10 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.3 Android Pie
Below step-by-step procedure is based on NXP’s Android NFC delivery from https://
github.com/NXPNFCLinux/nxpnfc_android_pie repository.

The current release is based on Android AOSP 9.0.0 version, porting on other Pie
version may requires minor adaptation of API (detected when compiling).

Pay attention that the AOSP adaptation of Android Pie is only delivered for PN7150
(and PN7150 derivatives like PN7150X) support.

4.3.1 Step 1: retrieving NXP-NCI NFC delivery

Clone repository into AOSP source directory:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android_pie.git ${ANDROID_BUILD_TOP}/
vendor/nxp/nfc

4.3.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$ ${ANDROID_BUILD_TOP}/vendor/nxp/nfc/install_NFC.sh

This will:

• Patch the AOSP hardware/nxp/nfc implementation to add PN7150 specific support
• Patch the AOSP packages/apps/Nfc to add support for PN7150 AGC debug feature

4.3.3 Step 3: updating configuration files

Adapt the libnfc-nci.conf and libnfc-nxp.conf files located in vendor/nxp/nfc/hw/pn7150/
conf sub-folder, created at Section 4.3.1, according to the integration specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

4.3.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk), include specific
makefile

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

In the BoardConfig.mk makefile (e.g. device/brand/platform/BoardConfig.mk), include
specific makefile

-include vendor/nxp/nfc/BoardConfigNfc.mk

4.3.5 Step 5: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 11 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_pie
https://github.com/NXPNFCLinux/nxpnfc_android_pie

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.3.6 Step 6: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 12 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.4 Android Oreo
Below step-by-step procedure is based on NXP’s Android NFC delivery from the
following repositories: https://github.com/NXPNFCLinux/nxpnfc_android_oreo (later
referenced as [NxpNfc_Android_oreo]) and https://source.codeaurora.org/external/
nfcandroid (later referenced as [NfcAndroid_Project]).

The current release is based on Android AOSP 8.1.0 version, porting on other Oreo
version may requires minor adaptation of API (detected when compiling).

Pay attention that the AOSP adaptation of Android Oreo is only delivered for
PN7150 (and PN7150 derivatives like PN7150X) support.

4.4.1 Step 1: retrieving NXP-NCI NFC delivery

Retrieve the NXP-NCI NFC Android manifest file from [NxpNfc_Android_oreo] using wget
command:

$ wget https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_oreo/master/
nxpnfc_manifest.xml

Or using curl command:

$ curl https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_oreo/master/
nxpnfc_manifest.xml > nxpnfc_manifest.xml

Then install it as local manifest in the AOSP source directory (if not existing, simply
create it):

& mv nxpnfc_manifest.xml {ANDROID_BUILD_TOP}/.repo/local_manifests/

And apply changes brought by NXP-NCI NFC Android manifest:

$ repo sync --force-sync

This will autonomously:

• Retrieve source code to be used in next Section 4.3.2 from https://
source.codeaurora.org/external/nfcandroid/NfcAndroid_LibnfcNci/, https://
source.codeaurora.org/external/nfcandroid/NfcAndroid_Nfc/, [NfcAndroid_Project]/
NfcAndroid_Vendor and https://source.codeaurora.org/external/nfcandroid/
NfcAndroid_Base/.

• Retrieve installation scripts, patches to be used in next Section 4.3.2, configuration files
and native Factory Test application source code from [NxpNfc_Android_oreo]

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 13 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_oreo
https://source.codeaurora.org/external/nfcandroid
https://source.codeaurora.org/external/nfcandroid
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_LibnfcNci/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_LibnfcNci/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_Nfc/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_Nfc/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_Vendor/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_Vendor/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_Base/
https://source.codeaurora.org/external/nfcandroid/NfcAndroid_Base/

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.4.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$./NxpNfcAndroid/install_NFC.sh

This will autonomously:

• Replace AOSP frameworks/base/core/java/android/nfc folder with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

• Copy the content of NxpNfcAndroid/NfcAndroid_Vendor sub-folder, created at
Section 4.3.1, to AOSP vendor folder with the one from NxpNfcAndroid sub-folder

• Replace AOSP packages/apps/Nfc folder with the one from NxpNfcAndroid sub-folder
created at Section 4.3.1

• Replace AOSP system/nfc folder with the one from NxpNfcAndroid sub-folder created
at Section 4.3.1

• Patch the AOSP core/tasks/check_boot_jars/package_whitelist.txt to add NFC
authorization

• Patch the AOSP frameworks/base/Android.mk to remove useless missing API
• Patch system/sepolicy files to add NFC specific rights
• Patch external/libnfc-nci/halimpl/pn54x/Android.mk and external/libnfc-nci/Android.mk

to set support of PN7150 or PN7120
• Patch system/nfc/halimpl/pn54x/configs/NxpNfcCapability.cpp and system/nfc/halimpl/

pn54x/hal/phNxpNciHal_ext.c in specific case of PN7150
• Patch packages/apps/Nfc/nci/jni/NativeNfcManager.cpp in specific case of PN7150

4.4.3 Step 3: updating configuration files

Adapt the libnfc-brcm.conf, libnfc-nxp.conf and libnfc-nxp_RF.conf files located in
NxpNfcAndroid/conf sub-folder, created at Section 4.3.1, according to the integration
specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

4.4.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk)

• Add the NFC related packages to the android build

PRODUCT_PACKAGES += \
 NfcNci \
 Tag \
 android.hardware.nfc@1.0-impl \
 vendor.nxp.nxpnfc@1.0-impl \
 nfc_nci.pn54x

ifeq ($(ENABLE_TREBLE), true)
PRODUCT_PACKAGES += \
 vendor.nxp.nxpnfc@1.0-service
endif

PRODUCT_PROPERTY_OVERRIDES += \
 ro.hardware.nfc_nci=pn54x

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 14 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

• Add xml files to Android launches the NFC functionalities:

PRODUCT_COPY_FILES += \
frameworks/native/data/etc/android.hardware.nfc.xml:system/etc/permissions/
android.hardware.nfc.xml \
frameworks/native/data/etc/android.hardware.nfc.hce.xml:system/etc/permissions/
android.hardware.nfc.hce.xml \
frameworks/native/data/etc/android.hardware.nfc.hcef.xml:system/etc/permissions/
android.hardware.nfc.hcef.xml \
NxpNfcAndroid/conf/libnfc-brcm.conf:system/vendor/etc/libnfc-brcm.conf \
NxpNfcAndroid/conf/libnfc-nxp.conf:system/vendor/etc/libnfc-nxp.conf \
NxpNfcAndroid/conf/libnfc-nxp_RF.conf:system/vendor/libnfc-nxp_RF.conf

4.4.5 Step 5: changing device owner and permissions

In the system/core/rootdir/init.rc file, add the following lines to the end of the on post-fs
section:

mkdir /data/vendor 0777 nfc nfc
mkdir /data/vendor/nfc 0777 nfc nfc
mkdir /data/vendor/nfc/param 0777 nfc nfc
setprop ro.nfc.port "I2C"
chmod 0660 /dev/pn544
chown nfc nfc /dev/pn544

Add the following definition to device manifest file (device/brand/platform/manifest.xml)

<hal format="hidl">
 <name>android.hardware.nfc</name>
 <transport>hwbinder</transport>
 <impl level="generic"></impl>
 <version>1.0</version>
 <interface>
 <name>INfc</name>
 <instance>default</instance>
 </interface>
</hal>
<hal format="hidl">
 <name>vendor.nxp.nxpnfc</name>
 <transport>hwbinder</transport>
 <impl level="generic"></impl>
 <version>1.0</version>
 <interface>
 <name>INnxpNfc</name>
 <instance>default</instance>
 </interface>
</hal>

4.4.6 Step 6: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

4.4.7 Step 7: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 15 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.5 Android Nougat
Below step-by-step procedure is based on NXP’s Android NFC delivery from the
following repositories: https://github.com/NXPNFCLinux/nxpnfc_android_nougat (later
referenced as [NxpNfc_Android_nougat]) and https://github.com/NXPNFCProject (later
referenced as [NxpNfc_Project]).

The current release is based on Android AOSP 7.1.1 version, porting on other Nougat
version may requires minor adaptation of API (detected when compiling).

4.5.1 Step 1: retrieving NXP-NCI NFC delivery

Retrieve the NXP-NCI NFC Android manifest file from [NxpNfc_Android_nougat] using
wget command:

$ wget https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_nougat/master/
nxpnfc_manifest.xml

Or using curl command:

$ curl https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_nougat/master/
nxpnfc_manifest.xml > nxpnfc_manifest.xml

Then install it as local manifest in the AOSP source directory:

& mv nxpnfc_manifest.xml {ANDROID_BUILD_TOP}/.repo/local_manifests/

And apply changes brought by NXP-NCI NFC Android manifest:

$ repo sync --force-sync

This will autonomously:

• Replace original AOSP external/libnfc-nci folder with the one from https://github.com/
NXPNFCProject/NFC_NCIHAL_libnfc-nci

• Replace original AOSP packages/apps/Nfc folder with the one from https://github.com/
NXPNFCProject/NFC_NCIHAL_Nfc and https://github.com/NXPNFCProject/
NXPNFC_Reference

• Retrieve source code to be merge with AOSP in next Section 4.3.2 from https://
github.com/NXPNFCProject/NFC_NCIHAL_base

• Retrieve installation scripts, patches to be used in next Section 4.3.2, configuration files
and native Factory Test application source code from [NxpNfc_Android_nougat]

4.5.2 Step 2: installing NXP-NCI delivery

Run the installation script (with either PN7120 or PN7150 as <NFCC> parameter):

$./NxpNfcAndroid/install_NFC.sh <NFCC>

This will autonomously:

• Replace AOSP hardware/libhardware/include/hardware/nfc.h file with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

• Replace AOSP frameworks/base/core/java/android/nfc folder with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 16 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_nougat
https://github.com/NXPNFCProject
https://github.com/NXPNFCProject/NFC_NCIHAL_libnfc-nci
https://github.com/NXPNFCProject/NFC_NCIHAL_libnfc-nci
https://github.com/NXPNFCProject/NFC_NCIHAL_Nfc
https://github.com/NXPNFCProject/NFC_NCIHAL_Nfc
https://github.com/NXPNFCProject/NXPNFC_Reference
https://github.com/NXPNFCProject/NXPNFC_Reference
https://github.com/NXPNFCProject/NFC_NCIHAL_base
https://github.com/NXPNFCProject/NFC_NCIHAL_base

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

• Copy AOSP frameworks/base/core/java/com/nxp folder from NxpNfcAndroid sub-folder
created at Section 4.3.1

• Copy AOSP frameworks/base/core/java/com/vzw folder from NxpNfcAndroid sub-folder
created at Section 4.3.1

• Patch the AOSP frameworks/base/Android.mk to insert NXP additions
• Patch external/libnfc-nci/halimpl/pn54x/Android.mk and external/libnfc-nci/Android.mk

to set support of PN7150 or PN7120
• Patch external/libnfc-nci/halimpl/pn54x/hal/phNxpNciHal.c and external/libnfc-nci/

halimpl/pn54x/tml/phTmlNfc.c in specific case of PN7120
• Patch packages/apps/Nfc/nci/jni/Android.mk to set support of PN7150 or PN7120
• Patch packages/apps/Nfc/nci/jni/NativeNfcManager.cpp in specific case of PN7150
• Copy configuration files, according to the NFCC selection, for further installation into

the android system image

4.5.3 Step 3: updating configuration files

Adapt the libnfc-brcm.conf and libnfc-nxp.conf files located in NxpNfcAndroid/conf sub-
folder, created at Section 4.3.2, according to the integration specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

4.5.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk)

• Add the NFC related packages to the android build

NFC packages
PRODUCT_PACKAGES += \
 libnfc-nci \
 libnfc_nci_jni \
 nfc_nci_pn54x.default\
 NfcNci \
 Tag \
 com.android.nfc_extras

• Add xml files to Android launches the NFC functionalities:

PRODUCT_COPY_FILES += \
frameworks/native/data/etc/com.nxp.mifare.xml:system/etc/permissions/com.nxp.mifare.xml \
frameworks/native/data/etc/com.android.nfc_extras.xml:system/etc/permissions/
com.android.nfc_extras.xml \
frameworks/native/data/etc/android.hardware.nfc.xml:system/etc/permissions/
android.hardware.nfc.xml \
frameworks/native/data/etc/android.hardware.nfc.hce.xml:system/etc/permissions/
android.hardware.nfc.hce.xml \
NxpNfcAndroid/android.hardware.nfc.hcef.xml:system/etc/permissions/
android.hardware.nfc.hcef.xml \
NxpNfcAndroid/conf/libnfc-brcm.conf:system/etc/libnfc-brcm.conf \
NxpNfcAndroid/conf/libnfc-nxp.conf:system/etc/libnfc-nxp.conf

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 17 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.5.5 Step 5: changing device owner and permissions

On the system/core/rootdir/init.rc file, add the following lines to the end of the on-boot
section:

NFC
setprop ro.nfc.port "I2C"
chmod 0660 /dev/pn544
chown nfc nfc /dev/pn544

4.5.6 Step 6: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

4.5.7 Step 7: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 18 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.6 Android Marshmallow
Below step-by-step procedure is based on NXP’s Android NFC delivery from the
following repositories: https://github.com/NXPNFCLinux/nxpnfc_android_marshmallow
(later referenced as [NxpNfc_Android_marshmallow]) and https://github.com/
NXPNFCProject (later referenced as [NxpNfc_Project]).

The current release is based on Android AOSP 6.0.1 version, porting on other
Marshmallow version may requires minor adaptation of API (detected when compiling).

4.6.1 Step 1: retrieving NXP-NCI NFC delivery

Retrieve the NXP-NCI NFC Android manifest file from [NxpNfc_Android_marshmallow]
using wget command:

$ wget https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_marshmallow/master/
nxpnfc_manifest.xml

Or using curl command:

$ curl https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_marshmallow/master/
nxpnfc_manifest.xml > nxpnfc_manifest.xml

Then install it as local manifest in the AOSP source directory:

& mv nxpnfc_manifest.xml {ANDROID_BUILD_TOP}/.repo/local_manifests/

And apply changes brought by NXP-NCI NFC Android manifest:

$ repo sync --force-sync

This will autonomously:

• Replace original AOSP external/libnfc-nci folder with the one from https://github.com/
NXPNFCProject/NFC_NCIHAL_libnfc-nci

• Replace original AOSP packages/apps/Nfc folder with the one from https://github.com/
NXPNFCProject/NFC_NCIHAL_Nfc and https://github.com/NXPNFCProject/
NXPNFC_Reference

• Retrieve source code to be merge with AOSP in next Section 4.3.2 from https://
github.com/NXPNFCProject/NFC_NCIHAL_base

• Retrieve installation scripts, patches to be used in next Section 4.3.2, configuration files
and native Factory Test application source code from [NxpNfc_Android_marshmallow]

4.6.2 Step 2: installing NXP-NCI delivery

Run the installation script (with either PN7120 or PN7150 as <NFCC> parameter):

$./NxpNfcAndroid/install_NFC.sh <NFCC>

This will autonomously:

• Replace AOSP hardware/libhardware/include/hardware/nfc.h file with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

• Replace AOSP frameworks/base/core/java/android/nfc folder with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 19 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_marshmallow
https://github.com/NXPNFCProject
https://github.com/NXPNFCProject
https://github.com/NXPNFCProject/NFC_NCIHAL_libnfc-nci
https://github.com/NXPNFCProject/NFC_NCIHAL_libnfc-nci
https://github.com/NXPNFCProject/NFC_NCIHAL_Nfc
https://github.com/NXPNFCProject/NFC_NCIHAL_Nfc
https://github.com/NXPNFCProject/NXPNFC_Reference
https://github.com/NXPNFCProject/NXPNFC_Reference
https://github.com/NXPNFCProject/NFC_NCIHAL_base
https://github.com/NXPNFCProject/NFC_NCIHAL_base

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

• Copy AOSP frameworks/base/core/java/com/nxp folder from NxpNfcAndroid sub-folder
created at Section 4.3.1

• Copy AOSP frameworks/base/core/java/com/vzw folder from NxpNfcAndroid sub-folder
created at Section 4.3.1

• Patch the AOSP frameworks/base/Android.mk to insert NXP additions
• Patch the AOSP frameworks/base/api/current.txt, frameworks/base/api/system-

current.txt, frameworks/base/core/java/android/content/pm/PackageManager.java and
frameworks/base/core/res/res/values/attrs.xml to add FeliCa HCE support in the scope
of PN7150

• Patch external/libnfc-nci/halimpl/pn54x/Android.mk and external/libnfc-nci/Android.mk
to set support of PN7150 or PN7120

• Patch external/libnfc-nci/halimpl/pn54x/hal/phNxpNciHal.c in specific case of PN7120
• Patch packages/apps/Nfc/nci/jni/Android.mk to set support of PN7150 or PN7120
• Patch packages/apps/Nfc/nci/jni/NativeNfcManager.cpp in specific case of PN7150
• Copy configuration files, according to the NFCC selection, for further installation into

the android system image

4.6.3 Step 3: updating configuration files

Adapt the libnfc-brcm.conf and libnfc-nxp.conf files located in NxpNfcAndroid/conf sub-
folder, created at Section 4.6.2, according to the integration specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

4.6.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk)

• Add the NFC related packages to the android build

NFC packages
PRODUCT_PACKAGES += \
 libnfc-nci \
 libnfc_nci_jni \
 nfc_nci_pn54x.default\
 NfcNci \
 Tag \
 com.android.nfc_extras

• Add xml files to Android launches the NFC functionalities:

PRODUCT_COPY_FILES += \
frameworks/native/data/etc/com.nxp.mifare.xml:system/etc/permissions/com.nxp.mifare.xml \
frameworks/native/data/etc/com.android.nfc_extras.xml:system/etc/permissions/
com.android.nfc_extras.xml \
frameworks/native/data/etc/android.hardware.nfc.xml:system/etc/permissions/
android.hardware.nfc.xml \
frameworks/native/data/etc/android.hardware.nfc.hce.xml:system/etc/permissions/
android.hardware.nfc.hce.xml \
NxpNfcAndroid/android.hardware.nfc.hcef.xml:system/etc/permissions/
android.hardware.nfc.hcef.xml \
NxpNfcAndroid/conf/libnfc-brcm.conf:system/etc/libnfc-brcm.conf \
NxpNfcAndroid/conf/libnfc-nxp.conf:system/etc/libnfc-nxp.conf

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 20 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.6.5 Step 5: changing device owner and permissions

On the system/core/rootdir/init.rc file, add the following lines to the end of the on-boot
section:

NFC
setprop ro.nfc.port "I2C"
chmod 0660 /dev/pn544
chown nfc nfc /dev/pn544

4.6.6 Step 6: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

4.6.7 Step 7: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 21 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.7 Android Lollipop
Below step-by-step procedure is based on NXP’s Android NFC delivery from the
following repositories: https://github.com/NXPNFCLinux/nxpnfc_android_lollipop (later
referenced as [NxpNfc_Android_lollipop]) and https://github.com/NXPNFCProject (later
referenced as [NxpNfc_Project]).

The current release is based on Android AOSP 5.1.1 version, porting on other Lollipop
version may requires minor adaptation of API (detected when compiling).

4.7.1 Step 1: retrieving NXP-NCI NFC delivery

Retrieve the NXP-NCI NFC Android manifest file from [NxpNfc_Android_lollipop] using
wget command:

$ wget https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_lollipop/master/
nxpnfc_manifest.xml

Or using curl command:

$ curl https://raw.githubusercontent.com/NXPNFCLinux/nxpnfc_android_lollipop/master/
nxpnfc_manifest.xml > nxpnfc_manifest.xml

Then install it as local manifest in the AOSP source directory:

& mv nxpnfc_manifest.xml {ANDROID_BUILD_TOP}/.repo/local_manifests/

And apply changes brought by NXP-NCI NFC Android manifest:

$ repo sync --force-sync

This will autonomously:

• Replace original AOSP external/libnfc-nci folder with the one from https://github.com/
NXPNFCProject/NFC_NCIHAL_libnfc-nci

• Replace original AOSP packages/apps/Nfc folder with the one from [NxpNfc_Project]/
NFC_NCIHAL_Nfc and https://github.com/NXPNFCProject/NXPNFC_Reference

• Retrieve source code to be merge with AOSP in next Section 4.3.2 from https://
github.com/NXPNFCProject/NFC_NCIHAL_base

• Retrieve installation scripts, patches to be used in next Section 4.3.2, configuration files
and native Factory Test application source code from [NxpNfc_Android_lollipop]

4.7.2 Step 2: installing NXP-NCI delivery

Run the installation script (with either PN7120 or PN7150 as <NFCC> parameter):

$./NxpNfcAndroid/install_NFC.sh <NFCC>

This will autonomously:

• Replace AOSP hardware/libhardware/include/hardware/nfc.h file with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

• Replace AOSP frameworks/base/core/java/android/nfc folder with the one from
NxpNfcAndroid sub-folder created at Section 4.3.1

• Copy AOSP frameworks/base/core/java/com/nxp folder from NxpNfcAndroid sub-folder
created at Section 4.3.1

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 22 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_lollipop
https://github.com/NXPNFCProject
https://github.com/NXPNFCProject/NFC_NCIHAL_libnfc-nci
https://github.com/NXPNFCProject/NFC_NCIHAL_libnfc-nci
https://github.com/NXPNFCProject/NFC_NCIHAL_Nfc
https://github.com/NXPNFCProject/NFC_NCIHAL_Nfc
https://github.com/NXPNFCProject/NXPNFC_Reference
https://github.com/NXPNFCProject/NFC_NCIHAL_base
https://github.com/NXPNFCProject/NFC_NCIHAL_base

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

• Copy AOSP frameworks/base/core/java/com/vzw folder from NxpNfcAndroid sub-folder
created at Section 4.3.1

• Patch the AOSP frameworks/base/Android.mk to insert NXP additions
• Patch external/libnfc-nci/halimpl/pn54x/Android.mk and external/libnfc-nci/Android.mk

to set support of PN7120 if selected as script parameter
• Patch packages/apps/Nfc/nci/jni/Android.mk to set support of PN7120 if selected as

script parameter

4.7.3 Step 3: updating configuration files

Adapt the libnfc-brcm.conf and libnfc-nxp.conf files located in NxpNfcAndroid/conf sub-
folder, created at Section 4.3.1, according to the integration specificities.

For instance if using a system clock instead of an on-board crystal, the value of
parameter “NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be find in chapter “Section 5”.

4.7.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk)

• Add the NFC related packages to the android build

NFC packages
PRODUCT_PACKAGES += \
 libnfc-nci \
 libnfc_nci_jni \
 nfc_nci_pn54x.default\
 NfcNci \
 Tag \
 com.android.nfc_extras

• Add xml files to Android launches the NFC functionalities:

PRODUCT_COPY_FILES += \
frameworks/native/data/etc/com.nxp.mifare.xml:system/etc/permissions/com.nxp.mifare.xml \
frameworks/native/data/etc/com.android.nfc_extras.xml:system/etc/permissions/
com.android.nfc_extras.xml \
frameworks/native/data/etc/android.hardware.nfc.xml:system/etc/permissions/
android.hardware.nfc.xml \
frameworks/native/data/etc/android.hardware.nfc.hce.xml:system/etc/permissions/
android.hardware.nfc.hce.xml \
NxpNfcAndroid/conf/libnfc-brcm.conf:system/etc/libnfc-brcm.conf \
NxpNfcAndroid/conf/libnfc-nxp.conf:system/etc/libnfc-nxp.conf

4.7.5 Step 5: changing device owner and permissions

On the system/core/rootdir/init.rc file, add the following lines to the end of the on-boot
section:

NFC
setprop ro.nfc.port "I2C"
chmod 0660 /dev/pn544
chown nfc nfc /dev/pn544

4.7.6 Step 6: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 23 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.7.7 Step 7: verifying NFC functionality

In “Settings” app check NFC is ON. NFC functionality should be then up and running,
ready to discover NFC tags or exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 24 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.8 Android KitKat
Below step-by-step procedure is based on NXP-NCI Android NFC package delivered by
NXP on the following repository: https://github.com/NXPNFCLinux/nxpnfc_android_kitkat.

The current release is based on Android AOSP 4.4.4 version, porting on other KitKat
versions may requires minor adaptation of API (detected when compiling).

4.8.1 Step 1: getting the release package

Clone the related repository:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android_kitkat.git

The following directory structure will be created:

├── aosp
│ └── external/libnfc-nci
│ └── ...
│ └── frameworks/base
│ └── core/java/android/nfc
│ └── ...
│ └── core/java/com/vzw/nfc
│ └── ...
│ └── Android.mk
│ └── hardware/libhardware/include/hardware
│ └── nfc.h
│ └── packages/apps/Nfc
│ └── ...
├── conf
│ └── libnfc-brcm.conf
│ └── libnfc-nxp.conf
├── FactoyTestApp
│ └── Android.mk
│ └── NfcFactoryTestApp.c
├── doc
│ └── AN11690 – NXP-NCI Android Porting Guidelines.pdf
└── README.txt

4.8.2 Step 2: merging files

Merge the files from the NXP-NCI Android NFC package (aosp sub-folder) into the target
AOSP source directory:

• Replace original AOSP external/libnfc-nci folder
• Replace original AOSP frameworks/base/core/java/android/nfc folder
• Copy or replace original AOSP frameworks/base/core/java/com/vzw/nfc folder
• Merge original AOSP frameworks/base/Android.mk with the one from the delivery (only

“nfc” related items must be added to the original makefile)
• Replace original AOSP hardware/libhardware/include/hardware/nfc.h file
• Replace original AOSP packages/apps/Nfc folder
• Copy FactoryTestApp sub-folder into a new folder named NxpNxpNfcAndroid (at AOSP

root path)

4.8.3 Step 3: selecting the NFC Controller

In the following makefiles:

• aosp/external/libnfc-nci/Android.mk
• aosp/external/libnfc-nci/halimpl/pn54x/Android.mk
• aosp/packages/apps/Nfc/nci/jni/Android.mk

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 25 / 43

https://github.com/NXPNFCLinux/nxpnfc_android_kitkat

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Adapt the following line according to the integrated NFC Controller:

• for PN7150

D_CFLAGS += -DNFC_NXP_CHIP_PN548AD=TRUE

• for PN7120

D_CFLAGS += -DNFC_NXP_CHIP_PN548AD=FALSE

4.8.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk)

• Add the NFC related packages to the android build

NFC packages
PRODUCT_PACKAGES += \
 libnfc-nci \
 libnfc_nci_jni \
 nfc_nci_pn54x.default\
 NfcNci \
 Tag \
 com.android.nfc_extras

• Add xml files to Android launches the NFC functionalities:

PRODUCT_COPY_FILES += \
frameworks/native/data/etc/com.nxp.mifare.xml:system/etc/permissions/com.nxp.mifare.xml \
frameworks/native/data/etc/com.android.nfc_extras.xml:system/etc/permissions/
com.android.nfc_extras.xml \
frameworks/native/data/etc/android.hardware.nfc.xml:system/etc/permissions/
android.hardware.nfc.xml \
frameworks/native/data/etc/android.hardware.nfc.hce.xml:system/etc/permissions/
android.hardware.nfc.hce.xml

4.8.5 Step 5: changing device owner and permissions

On the system/core/rootdir/init.rc file, add the following lines to the end of the on-boot
section:

NFC
setprop ro.nfc.port "I2C"
chmod 0660 /dev/pn544
chown nfc nfc /dev/pn544

4.8.6 Step 6: building and installing NFC

Build and flash the system image (the boot image shall already contain the kernel driver
as instructed in chapter “Section 3”).

Once the Android platform boots up, add the 2 configuration files required by the libnfc-
nci library:

$ adb push libnfc-brcm.conf /etc/
$ adb push libnfc-nxp.conf /etc/

Examples are given in the NXP-NCI Android NFC package, under conf sub-directory, but
pay attention that some adaptation may be required according to your integration (see
chapter “Section 5” for more details). Then reboot the platform.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 26 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.8.7 Step 7: verifying NFC functionality

In “Settings” app check NFC is ON.

NFC functionality should be then up and running, ready to discover NFC tags or
exchange data with remote NFC devices.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 27 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

4.9 Others Android versions
For other Android versions the AOSP must be manually adapted (merged) from the
source retrieved as detailed in previous chapters depending on the targeted version.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 28 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

5 Configuration files

5.1 Android R, Q and Pie
Two files allow configuring the libnfc-nci library at runtime: libnfc-nci.conf and libnfc-
nxp.conf. There are defining tags which are impacting library behavior. The value of the
tags depends on the NFC Controller IC and the targeted platform. For more details, refer
to the examples given in vendor/nxp/nfc/hw/pn7150 sub-folder of the stack delivery (see
chapter Section 4.3.3).

These files are loaded by the library, from /vendor/etc directory of the target, during the
initialization phase.

Pay attention that the configuration files provided as example relate to the NFC
Controller demo boards. These files must be adapted according to the targeted
integration.

Below is the description of the different useful tags in the configuration files (refer to the
conf files for detailed information about the tag values).

Tag Description

APPL_TRACE_LEVEL Log levels for libnfc-nci.
Recommended value for debugging is 0xFF.

PROTOCOL_TRACE_LEVEL Log levels for libnfc-nci.
Recommended value for debugging is 0xFF.

NFA_STORAGE Set the target directory for NFC file storage

HOST_LISTEN_TECH_MASK Configure HOST listen feature.

SCREEN_OFF_POWER_STATE Configuration of screen off power state.

POLLING_TECH_MASK Configuration of the polling technologies.

P2P_LISTEN_TECH_MASK Configuration of listen technologies for P2P.

NFA_DM_DISC_DURATION_POLL Configuration of the discovery loop TOTAL
DURATION (in milliseconds).

NFA_MAX_EE_SUPPORTED Set the maximum number of Execution
Environments supported.

Table 1. Tag list of libnfc-nci.conf file

Tag Description

NXPLOG_EXTNS_LOGLEVEL Set level of EXTNS logs.
Recommended value for debug is 0x03.

NXPLOG_NCIHAL_LOGLEVEL Set level of NCIHAL logs.
Recommended value for debug is 0x03.

NXPLOG_NCIX_LOGLEVEL Set level of NCIX logs.
Recommended value for debug is 0x03.

NXPLOG_NCIR_LOGLEVEL Set level of NCIR logs.
Recommended value for debug is 0x03.

Table 2. Tag list of libnfc-nxp.conf file

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 29 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Tag Description

NXPLOG_FWDNLD_LOGLEVEL Set level of FWDNLD logs.
Recommended value for debug is 0x03.

NXPLOG_TML_LOGLEVEL Set level of FWDNLD logs.
Recommended value for debug is 0x03.

NXP_NFC_DEV_NODE Set the NFC device node name.

MIFARE_READER_ENABLE Set the support of the reader for MIFARE
Classic.

NXP_SYS_CLK_SRC_SEL Configure the clock source of the NFC
Controller.

NXP_SYS_CLK_FREQ_SEL Set the clock frequency in case of PLL clock
source.

NXP_SYS_CLOCK_TO_CFG Set clock request acknowledgment time value
in case of PLL clock source.

NXP_ACT_PROP_EXTN Set NXP’s NFC Controller proprietary features.

NXP_CORE_STANDBY Set the standby mode enabled or disabled.

NFA_PROPRIETARY_CFG Set Vendor proprietary configuration.

NXP_EXT_TVDD_CFG Set TVDD configuration mode (PN7150 only).

NXP_EXT_TVDD_CFG_x Configure TVDD settings according to TVDD
mode selected (PN7150 only).

NXP_SET_CONFIG_ALWAYS Set configuration optimization decision setting.

NXP_NFC_PROFILE_EXTN Set discovery profile.

NXP_I2C_FRAGMENTATION_ENABLED Configure I2C fragmentation.

NXP_RF_CONF_BLK_x Set platform-specific RF configuration.

NXP_CORE_CONF_EXTN Configure proprietary parts of the NFC
Controller.

NXP_CORE_CONF Configure standardized parts of the NFC
Controller.

NXP_CORE_MFCKEY_SETTING Proprietary configuration for the key storage for
MIFARE Classic.

Table 2. Tag list of libnfc-nxp.conf file...continued

5.2 Android Oreo
Three files allow configuring the libnfc-nci library at runtime: libnfc-brcm.conf, libnfc-
nxp.conf and libnfc-nxp_RF.conf. There are defining tags which are impacting library
behavior. The value of the tags depends on the NFC Controller IC and the targeted
platform. For more details, refer to the examples given in conf sub-folder of the stack
delivery (see chapter Section 4.4.3).

These files are loaded by the library, from /system/vendor/etc directory (/system/vendor
for libnfc-nxp_RF.conf file) on the target, during the initialization phase.

Pay attention that the configuration files provided as example relate to the NFC
Controller demo boards. These files must be adapted according to the targeted
integration.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 30 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Below is the description of the different useful tags in the configuration files (refer to the
conf files for detailed information about the tag values).

Tag Description

APPL_TRACE_LEVEL Log levels for libnfc-nci.
Recommended value for debugging is 0xFF.

PROTOCOL_TRACE_LEVEL Log levels for libnfc-nci.
Recommended value for debugging is 0xFF.

HOST_LISTEN_TECH_MASK Configure HOST listen feature.

SCREEN_OFF_POWER_STATE Configuration of screen off power state.

PRESENCE_CHECK_ALGORITHM Configure the T4T presence check method.

POLLING_TECH_MASK Configuration of the polling technologies.

P2P_LISTEN_TECH_MASK Configuration of listen technologies for P2P.

NCI_HAL_MODULE Set NCI HAL module name.

NFA_DM_DISC_DURATION_POLL Configuration of the discovery loop TOTAL
DURATION (in milliseconds).

NFA_MAX_EE_SUPPORTED Set the maximum number of Execution
Environments supported.

Table 3. Tag list of libnfc-brcm.conf file

Tag Description

NXPLOG_EXTNS_LOGLEVEL Set level of EXTNS logs.
Recommended value for debug is 0x03.

NXPLOG_NCIHAL_LOGLEVEL Set level of NCIHAL logs.
Recommended value for debug is 0x03.

NXPLOG_NCIX_LOGLEVEL Set level of NCIX logs.
Recommended value for debug is 0x03.

NXPLOG_NCIR_LOGLEVEL Set level of NCIR logs.
Recommended value for debug is 0x03.

NXPLOG_FWDNLD_LOGLEVEL Set level of FWDNLD logs.
Recommended value for debug is 0x03.

NXPLOG_TML_LOGLEVEL Set level of FWDNLD logs.
Recommended value for debug is 0x03.

NXP_NFC_DEV_NODE Allow setting the device node name (if not set “/
dev/pn544” is used by default).

MIFARE_READER_ENABLE Set the support of the reader for MIFARE
Classic.

NXP_SYS_CLK_SRC_SEL Configure the clock source of the NFC
Controller.

NXP_SYS_CLK_FREQ_SEL Set the clock frequency in case of PLL clock
source.

Table 4. Tag list of libnfc-nxp.conf file

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 31 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Tag Description

NXP_SYS_CLOCK_TO_CFG Set clock request acknowledgment time value
in case of PLL clock source.

NXP_ACT_PROP_EXTN Set NXP’s NFC Controller proprietary features.

NXP_NFC_MERGE_RF_PARAMS Set NFCC Configuration control.

NXP_CORE_STANDBY Set the standby mode enabled or disabled.

NXP_EXT_TVDD_CFG Set TVDD configuration mode (PN7150 only).

NXP_EXT_TVDD_CFG_x Configure TVDD settings according to TVDD
mode selected (PN7150 only).

NXP_SET_CONFIG_ALWAYS Force the clock configuration.

NXP_I2C_FRAGMENTATION_ENABLED Set the I2C fragmentation capability.

NXP_NFC_PROFILE_EXTN Set discovery profile.

NXP_CORE_MFCKEY_SETTING Proprietary configuration for Key storage of
MIFARE Classic.

Table 4. Tag list of libnfc-nxp.conf file...continued

Tag Description

NXP_RF_CONF_BLK_x Set platform specific RF configuration.

NXP_CORE_CONF_EXTN Configure proprietary parts of the NFC
Controller.

NXP_CORE_CONF Configure standardized parts of the NFC
Controller.

Table 5. Tag list of libnfc-nxp_RF.conf file

5.3 Android Nougat and previous versions
Two files allow configuring the libnfc-nci library at runtime: libnfc-brcm.conf and libnfc-
nxp.conf. There are defining tags which are impacting library behavior. The value of the
tags depends on the NFC Controller IC and the targeted platform. For more details, refer
to the examples given in conf sub-folder of the stack delivery (see chapter Section 4.5.3,
Section 4.6.3, Section 4.7.3 or Section 4.8.1).

These files are loaded by the library, from /etc directory of the target, during the
initialization phase.

Pay attention that the configuration files provided as example relate to the NFC
Controller demo boards. These files must be adapted according to the targeted
integration.

Below is the description of the different useful tags in the configuration files (refer to the
conf files for detailed information about the tag values).

Tag Description

APPL_TRACE_LEVEL Log levels for libnfc-nci.
Recommended value for debugging is 0xFF.

Table 6. Tag list of libnfc-brcm.conf file

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 32 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Tag Description

PROTOCOL_TRACE_LEVEL Log levels for libnfc-nci.
Recommended value for debugging is 0xFF.

HOST_LISTEN_ENABLE Configure force HOST listen feature.

SCREEN_OFF_POWER_STATE Configuration of screen off power state.

POLLING_TECH_MASK Configuration of the polling technologies.

P2P_LISTEN_TECH_MASK Configuration of listen technologies for P2P.

NFA_DM_DISC_DURATION_POLL Configuration of the discovery loop TOTAL
DURATION (in milliseconds).

NFA_MAX_EE_SUPPORTED Set the maximum number of Execution
Environments supported.

Table 6. Tag list of libnfc-brcm.conf file...continued

Tag Description

NXPLOG_EXTNS_LOGLEVEL Set level of EXTNS logs.
Recommended value for debug is 0x03.

NXPLOG_NCIHAL_LOGLEVEL Set level of NCIHAL logs.
Recommended value for debug is 0x03.

NXPLOG_NCIX_LOGLEVEL Set level of NCIX logs.
Recommended value for debug is 0x03.

NXPLOG_NCIR_LOGLEVEL Set level of NCIR logs.
Recommended value for debug is 0x03.

NXPLOG_FWDNLD_LOGLEVEL Set level of FWDNLD logs.
Recommended value for debug is 0x03.

NXPLOG_TML_LOGLEVEL Set level of FWDNLD logs.
Recommended value for debug is 0x03.

MIFARE_READER_ENABLE Set the support of the reader for MIFARE
Classic.

NXP_SYS_CLK_SRC_SEL Configure the clock source of the NFC
Controller.

NXP_SYS_CLK_FREQ_SEL Set the clock frequency in case of PLL clock
source.

NXP_SYS_CLOCK_TO_CFG Set clock request acknowledgment time value
in case of PLL clock source.

NXP_ACT_PROP_EXTN Set NXP’s NFC Controller proprietary features.

NXP_NFC_MERGE_RF_PARAMS Set NFCC Configuration control.

NXP_CORE_STANDBY Set the standby mode enabled or disabled.

NXP_EXT_TVDD_CFG Set TVDD configuration mode (PN7150 only).

NXP_EXT_TVDD_CFG_x Configure TVDD settings according to TVDD
mode selected (PN7150 only).

NXP_NFC_PROFILE_EXTN Set discovery profile.

Table 7. Tag list of libnfc-nxp.conf file

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 33 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Tag Description

NXP_RF_CONF_BLK_x Set platform-specific RF configuration.

NXP_CORE_CONF_EXTN Configure proprietary parts of the NFC
Controller.

NXP_CORE_CONF Configure standardized parts of the NFC
Controller.

NXP_CORE_MFCKEY_SETTING Proprietary configuration for Key storage for
MIFARE Classic.

Table 7. Tag list of libnfc-nxp.conf file...continued

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 34 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

6 Factory test native application

To ease the characterization of the NFC integration in the Android device, the
FactoryTestApp native application is offered. It allows setting the NFC controller into
either:

• Constant RF emission mode (no modulation)
• or PRBS (Pseudo Random Binary Sequence) mode (continuous modulation)

The source code is delivered together with the AOSP adaptation release (see above
steps 1 in AOSP adaptation procedures).

The binary is generated while building the system image, but can also be independently
built using following command (depending on the Android release version):

• Recent Android version until Oreo:

$ mmm vendor/nxp/nfc/FactoryTestApp

• Android Oreo and older releases:

$ mmm NxpNfcAndroid/FactoryTestApp

Then copy the binary file (out/target/product/platform/system/bin/NfcFactoryTestApp) to
the Android target, using adb tool for instance:

$ adb push NfcFactoryTestApp /data

On the Android target, update the file rights to allow execution and, after making sure the
NFC service is disabled (in “Settings” app NFC must be off), run the application:

Figure 2. Running Factory Test native application on Android target

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 35 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

7 Troubleshooting

The following items may help figuring out what is going wrong in case NFC is not working
as expected when starting the Android device.

7.1 Device node rights
The following ADB logs may indicate a wrong setting of the kernel module related device
node access rights:

…
D/NxpTml (894): Opening port=/dev/pn544
E/NxpTml (894): _i2c_open() Failed: retval ffffffff
D/NxpTml (894): phTmlNfc_i2c_reset(), VEN level 0
E/NxpHal (894): phTmlNfc_Init Failed
D/NfcAdaptation(894): NfcAdaptation::HalDeviceContextCallback: event=0
I/BrcmNfcNfa(894): nfc_main_hal_cback event: HAL_NFC_OPEN_CPLT_EVT(0x0), status=1
D/NxpHal (894): Failed to deallocate (list empty)
D/NxpHal (894): Node dump:
D/NxpHal (894): Failed to deallocate (list empty)
D/NxpHal (894): Node dump:
…

The pn5xx_i2c device node should usually appear with the following rights:

$ adb shell ls -als /dev/pn544
crw-rw---- nfc nfc 10, 54 2016-05-03 13:05 pn544

If this is not the case, refer to related procedure chapter Section 4.4.5, Section 4.5.5,
Section 4.6.5, Section 4.7.5 or Section 4.8.5.

Additionally, in case the platform implements Security-Enhanced Linux in Android,
pn5xx_i2c device node must be declared as NFC device. This is done adding the
following definition inside device/brand/platform/sepolicy/file_contexts file:

/dev/pn544 u:object_r:nfc_device:s0

7.2 Configuration files
The following ADB logs may indicates the absence of the configuration files:

…
D/BrcmNfcJni(893): PowerSwitch::initialize: level=PS-FULL (1)
D/NfcAdaptation(893): bool CNfcConfig::readConfig(const char*, bool) Cannot open config
 file /etc/libnfc-brcm.conf
D/NfcAdaptation(893): bool CNfcConfig::readConfig(const char*, bool) Using default value
 for all settings
D/BrcmNfcJni(893): PowerSwitch::initialize: desired screen-off state=1
D/NfcAdaptation(893): NfcAdaptation::Initialize: enter
E/NfcAdaptation(893): NfcAdaptation::Initialize: ver=NFCDROID-AOSP_L_00.01
 nfa=NFA_PI_1.03.66+
D/BrcmNfcJni(893): initializeGlobalAppLogLevel: level=5
D/NfcAdaptation(893): NfcAdaptation::NFCA_TASK: enter
I/BrcmNfcNfa(893): GKI_run(): Start/Stop GKI_timer_update_registered!
D/NfcAdaptation(893): NfcAdaptation::Thread: enter
I/BrcmNfcNfa(893): NFC_TASK started.
D/NfcAdaptation(893): NfcAdaptation::InitializeHalDeviceContext: enter
E/NfcAdaptation(893): No HAL module specified in config, falling back to BCM2079x
E/NfcAdaptation(893): NfcAdaptation::InitializeHalDeviceContext: fail hw_get_module
 nfc_nci.bcm2079x
D/NfcAdaptation(893): NfcAdaptation::InitializeHalDeviceContext: exit
D/NfcAdaptation(893): NfcAdaptation::Initialize: exit
I/BrcmNfcNfa(893): NFA_Init ()
I/BrcmNfcNfa(893): nfa_dm_init ()
…

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 36 / 43

https://source.android.com/security/selinux

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

They should usually be installed in /etc android target directory:

$ adb shell ls -als /etc/libnfc*.conf
-rw-r--r-- root root 3146 2016-03-11 23:07 libnfc-brcm.conf
-rw-r--r-- root root 3738 2016-03-11 23:07 libnfc-nxp.conf

If this is not the case, refer to related procedure Section 4.3.4, Section 4.7.4 or
Section 4.8.6.

7.3 NXP’s NFC library
The following ADB logs may indicates missing NXP’s NFC specific library:

…
I/BrcmNfcNfa(2609): NFC_TASK started.
D/NfcAdaptation(2609): NfcAdaptation::Thread: exit
D/NfcAdaptation(2609): NfcAdaptation::InitializeHalDeviceContext: enter
D/NfcAdaptation(2609): const CNfcParam* CNfcConfig::find(const char*) const found
 NCI_HAL_MODULE=nfc_nci.pn54x
E/NfcAdaptation(2609): NfcAdaptation::InitializeHalDeviceContext: fail hw_get_module
 nfc_nci.pn54x
D/NfcAdaptation(2609): NfcAdaptation::InitializeHalDeviceContext: exit
D/NfcAdaptation(2609): NfcAdaptation::Initialize: exit
…

The library should be located under /system/lib/hw android target sub-directory:

$ adb shell ls -als /system/lib/hw/nfc*
-rw-r--r-- root root 119188 2016-03-14 13:55 nfc_nci.pn54x.default.so

If this is not the case, insure it is properly built:

$ mmm external/libnfc-nci/ - snod

You can then either flash the newly created system.img or just copy the library to the
android target:

$ adb push nfc_nci.pn54x.default.so /system/lib/hw/

7.4 NFC Controller choice
The following ADB logs may indicates a wrong adaptation of the NFC libraries to the NFC
controller integrated (PN7120 or PN7150):

…
D/NxpTml (25279): PN54X - Write requested.....
D/NxpTml (25279): PN54X - Invoking I2C Write.....
D/NxpTml (25279): PN54X - Read requested.....
D/NxpTml (25279): PN54X - Invoking I2C Read.....
D/NxpNciX (25279): len = 10 > 20020702310100380101
D/NxpTml (25279): PN54X - I2C Write successful.....
D/NxpTml (25279): PN54X - Posting Fresh Write message.....
D/NxpTml (25279): PN54X - Tml Writer Thread Running................
D/NxpHal (25279): write successful status = 0x0
D/NxpTml (25279): PN54X - I2C Read successful.....
D/NxpNciR (25279): len = 4 > 40020106
D/NxpTml (25279): PN54X - Posting read message.....
D/NxpHal (25279): read successful status = 0x0
D/NxpHal (25279): > Deinit for LLCP set_config 0x0 0x0 0x0
D/NxpHal (25279): phNxpNciHal_print_res_status: response status =STATUS_OK
…

If this is the case, refer to related procedure chapter Section 4.3.2, Section 4.7.2 or
Section 4.8.3.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 37 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

7.5 Missing modules
The following ADB logs may indicates missing declaration of required NFC libraries:

…
W ActivityManager: Re-adding persistent process ProcessRecord{f8a0220
 28966:com.android.nfc/1027}
I ActivityManager: Start proc 28995:com.android.nfc/1027 for restart com.android.nfc
I com.android.nf: ConfigFile - Parsing file '/etc/libnfc-nci.conf'
I com.android.nf: ConfigFile - [NFA_STORAGE] = "/data/vendor/nfc"
I com.android.nf: ConfigFile - [NCI_HAL_MODULE] = "nfc_nci.pn54x"
I hwservicemanager: getTransport: Cannot find entry vendor.nxp.nxpnfc@1.0::INxpNfc/default
 in either framework or device manifest.
I hwservicemanager: getTransport: Cannot find entry android.hardware.nfc@1.2::INfc/default
 in either framework or device manifest.
I hwservicemanager: getTransport: Cannot find entry android.hardware.nfc@1.1::INfc/default
 in either framework or device manifest.
I hwservicemanager: getTransport: Cannot find entry android.hardware.nfc@1.0::INfc/default
 in either framework or device manifest.
F libc : Fatal signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x0 in tid 28995
 (com.android.nfc), pid 28995 (com.android.nfc)
F DEBUG : pid: 28995, tid: 28995, name: com.android.nfc >>> com.android.nfc <<<
F DEBUG : #00 pc 00000000000ad8c8 /system/lib64/libnfc-nci.so
 (NfcAdaptation::InitializeHalDeviceContext()+1736) (BuildId:
 bc889132110efe73c4fc9e58e8776b54)
F DEBUG : #1 pc 00000000000ad1dc /system/lib64/libnfc-nci.so
…

Make sure the related libraries are present on the target and also properly declared in
manifest file (/vendor/etc/vintf/manifest.xml).

7.6 VTS testing

7.6.1 Wrong interface

Wrong interface may be subject to test while it should not (for instance below “nfc-nci”
while only “default” interface must be considered):

VtsHalNfcV1_0Target#NfcHidlTest.OpenAndClose(nfc_nci)_64bit fail Unknown failure.
VtsHalNfcV1_0Target#NfcHidlTest.WriteCoreReset(nfc_nci)_64bit fail Unknown error: test case
 requested but not executed.

“nfc-nci” interface must be undefined from “fqname” tag inside /vendor/etc/vintf/
manifest.xml file.

7.6.2 Missing declaration

GetConfig test may fail because of missing declaration.

VtsHalNfcV1_1Target#NfcHidlTest.GetConfig(default)_64bit fail hardware/interfaces/nfc/1.1/
vts/functional/VtsHalNfcV1_1TargetTest.cpp:223

To fix this, add “ISO_DEP_MAX_TRANSCEIVE=0xFEFF” definition to “libnfc-nxp.conf”
configuration file.

7.6.3 Wrong vendor properties namespace

testVendorPropertyNamespace test may fail because of wrong definition.

VtsTrebleSysProp#testVendorPropertyNamespace fail 2 != 0 vendor propertes
 (cts_gts.media.gts persist.nfc.) have wrong namespace armeabi-v7a VtsTrebleSysProp
Update sepolicy/property_contexts file with “persist.vendor.nfc.” instead of
 “persist.nfc.”.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 38 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

8 Legal information

8.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not
give any representations or warranties, expressed or implied, as to the
accuracy or completeness of such information and shall have no liability
for the consequences of use of such information. NXP Semiconductors
takes no responsibility for the content in this document if provided by an
information source outside of NXP Semiconductors. In no event shall NXP
Semiconductors be liable for any indirect, incidental, punitive, special or
consequential damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal or replacement
of any products or rework charges) whether or not such damages are based
on tort (including negligence), warranty, breach of contract or any other
legal theory. Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative
liability towards customer for the products described herein shall be limited
in accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes
no representation or warranty that such applications will be suitable
for the specified use without further testing or modification. Customers
are responsible for the design and operation of their applications and
products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications
and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with
their applications and products. NXP Semiconductors does not accept any
liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or
the application or use by customer’s third party customer(s). Customer is
responsible for doing all necessary testing for the customer’s applications
and products using NXP Semiconductors products in order to avoid a
default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this
respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of
non-infringement, merchantability and fitness for a particular purpose. The
entire risk as to the quality, or arising out of the use or performance, of this
product remains with customer. In no event shall NXP Semiconductors, its
affiliates or their suppliers be liable to customer for any special, indirect,
consequential, punitive or incidental damages (including without limitation
damages for loss of business, business interruption, loss of use, loss of
data or information, and the like) arising out the use of or inability to use
the product, whether or not based on tort (including negligence), strict
liability, breach of contract, breach of warranty or any other theory, even if
advised of the possibility of such damages. Notwithstanding any damages
that customer might incur for any reason whatsoever (including without
limitation, all damages referenced above and all direct or general damages),
the entire liability of NXP Semiconductors, its affiliates and their suppliers
and customer’s exclusive remedy for all of the foregoing shall be limited to
actual damages incurred by customer based on reasonable reliance up to
the greater of the amount actually paid by customer for the product or five
dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall
apply to the maximum extent permitted by applicable law, even if any remedy
fails of its essential purpose.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — Customer understands that all NXP products may be subject
to unidentified or documented vulnerabilities. Customer is responsible
for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s
applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use
in customer’s applications. NXP accepts no liability for any vulnerability.
Customer should regularly check security updates from NXP and follow up
appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make
the ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may
be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

8.3 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the
Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/
IEC 21481 does not convey an implied license under any patent right
infringed by implementation of any of those standards. Purchase of NXP
Semiconductors IC does not include a license to any NXP patent (or other
IP right) covering combinations of those products with other products,
whether hardware or software.

8.4 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

MIFARE — is a trademark of NXP B.V.
MIFARE Classic — is a trademark of NXP B.V.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 39 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

NXP — wordmark and logo are trademarks of NXP B.V.

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 40 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Tables
Tab. 1. Tag list of libnfc-nci.conf file 29
Tab. 2. Tag list of libnfc-nxp.conf file 29
Tab. 3. Tag list of libnfc-brcm.conf file31
Tab. 4. Tag list of libnfc-nxp.conf file 31

Tab. 5. Tag list of libnfc-nxp_RF.conf file32
Tab. 6. Tag list of libnfc-brcm.conf file32
Tab. 7. Tag list of libnfc-nxp.conf file 33

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 41 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Figures
Fig. 1. Android NFC stack overview3 Fig. 2. Running Factory Test native application on

Android target ..35

AN11690 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 2.0 — 14 December 2020
COMPANY PUBLIC 333220 42 / 43

NXP Semiconductors AN11690
NXP NCI Android Porting Guidelines

Contents
1 Revision history .. 2
2 Introduction ... 3
3 Kernel driver ..4
3.1 Driver details ..4
3.2 Installation instructions 4
3.2.1 Getting the driver ...4
3.2.2 Including the driver to the kernel 4
3.2.3 Creating the device node 4
3.2.3.1 Device tree .. 5
3.2.3.2 Platform data ... 5
3.2.4 Building the driver ..6
4 AOSP adaptation ...7
4.1 Android R ...7
4.1.1 Step 1: retrieving NXP-NCI NFC delivery 7
4.1.2 Step 2: installing NXP-NCI delivery 7
4.1.3 Step 3: updating configuration files 7
4.1.4 Step 4: adding NFC to the build 8
4.1.5 Step 5: building and installing NFC 8
4.1.6 Step 6: verifying NFC functionality 8
4.2 Android Q .. 9
4.2.1 Step 1: retrieving NXP-NCI NFC delivery 9
4.2.2 Step 2: installing NXP-NCI delivery 9
4.2.3 Step 3: updating configuration files 9
4.2.4 Step 4: adding NFC to the build 10
4.2.5 Step 5: building and installing NFC 10
4.2.6 Step 6: verifying NFC functionality10
4.3 Android Pie .. 11
4.3.1 Step 1: retrieving NXP-NCI NFC delivery 11
4.3.2 Step 2: installing NXP-NCI delivery 11
4.3.3 Step 3: updating configuration files11
4.3.4 Step 4: adding NFC to the build 11
4.3.5 Step 5: building and installing NFC 11
4.3.6 Step 6: verifying NFC functionality12
4.4 Android Oreo ... 13
4.4.1 Step 1: retrieving NXP-NCI NFC delivery 13
4.4.2 Step 2: installing NXP-NCI delivery 14
4.4.3 Step 3: updating configuration files14
4.4.4 Step 4: adding NFC to the build 14
4.4.5 Step 5: changing device owner and

permissions ..15
4.4.6 Step 6: building and installing NFC 15
4.4.7 Step 7: verifying NFC functionality15
4.5 Android Nougat ..16
4.5.1 Step 1: retrieving NXP-NCI NFC delivery 16
4.5.2 Step 2: installing NXP-NCI delivery 16
4.5.3 Step 3: updating configuration files17
4.5.4 Step 4: adding NFC to the build 17
4.5.5 Step 5: changing device owner and

permissions ..18
4.5.6 Step 6: building and installing NFC 18
4.5.7 Step 7: verifying NFC functionality18
4.6 Android Marshmallow 19
4.6.1 Step 1: retrieving NXP-NCI NFC delivery 19

4.6.2 Step 2: installing NXP-NCI delivery 19
4.6.3 Step 3: updating configuration files20
4.6.4 Step 4: adding NFC to the build 20
4.6.5 Step 5: changing device owner and

permissions ..21
4.6.6 Step 6: building and installing NFC 21
4.6.7 Step 7: verifying NFC functionality21
4.7 Android Lollipop ...22
4.7.1 Step 1: retrieving NXP-NCI NFC delivery 22
4.7.2 Step 2: installing NXP-NCI delivery 22
4.7.3 Step 3: updating configuration files23
4.7.4 Step 4: adding NFC to the build 23
4.7.5 Step 5: changing device owner and

permissions ..23
4.7.6 Step 6: building and installing NFC 23
4.7.7 Step 7: verifying NFC functionality24
4.8 Android KitKat ..25
4.8.1 Step 1: getting the release package 25
4.8.2 Step 2: merging files 25
4.8.3 Step 3: selecting the NFC Controller 25
4.8.4 Step 4: adding NFC to the build 26
4.8.5 Step 5: changing device owner and

permissions ..26
4.8.6 Step 6: building and installing NFC 26
4.8.7 Step 7: verifying NFC functionality27
4.9 Others Android versions 28
5 Configuration files .. 29
5.1 Android R, Q and Pie 29
5.2 Android Oreo ... 30
5.3 Android Nougat and previous versions32
6 Factory test native application 35
7 Troubleshooting .. 36
7.1 Device node rights ...36
7.2 Configuration files ..36
7.3 NXP’s NFC library ... 37
7.4 NFC Controller choice 37
7.5 Missing modules ..38
7.6 VTS testing .. 38
7.6.1 Wrong interface ... 38
7.6.2 Missing declaration ..38
7.6.3 Wrong vendor properties namespace38
8 Legal information ..39

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 December 2020
Document identifier: AN11690

Document number: 333220

	1 Revision history
	2 Introduction
	3 Kernel driver
	3.1 Driver details
	3.2 Installation instructions
	3.2.1 Getting the driver
	3.2.2 Including the driver to the kernel
	3.2.3 Creating the device node
	3.2.3.1 Device tree
	3.2.3.2 Platform data

	3.2.4 Building the driver

	4 AOSP adaptation
	4.1 Android R
	4.1.1 Step 1: retrieving NXP-NCI NFC delivery
	4.1.2 Step 2: installing NXP-NCI delivery
	4.1.3 Step 3: updating configuration files
	4.1.4 Step 4: adding NFC to the build
	4.1.5 Step 5: building and installing NFC
	4.1.6 Step 6: verifying NFC functionality

	4.2 Android Q
	4.2.1 Step 1: retrieving NXP-NCI NFC delivery
	4.2.2 Step 2: installing NXP-NCI delivery
	4.2.3 Step 3: updating configuration files
	4.2.4 Step 4: adding NFC to the build
	4.2.5 Step 5: building and installing NFC
	4.2.6 Step 6: verifying NFC functionality

	4.3 Android Pie
	4.3.1 Step 1: retrieving NXP-NCI NFC delivery
	4.3.2 Step 2: installing NXP-NCI delivery
	4.3.3 Step 3: updating configuration files
	4.3.4 Step 4: adding NFC to the build
	4.3.5 Step 5: building and installing NFC
	4.3.6 Step 6: verifying NFC functionality

	4.4 Android Oreo
	4.4.1 Step 1: retrieving NXP-NCI NFC delivery
	4.4.2 Step 2: installing NXP-NCI delivery
	4.4.3 Step 3: updating configuration files
	4.4.4 Step 4: adding NFC to the build
	4.4.5 Step 5: changing device owner and permissions
	4.4.6 Step 6: building and installing NFC
	4.4.7 Step 7: verifying NFC functionality

	4.5 Android Nougat
	4.5.1 Step 1: retrieving NXP-NCI NFC delivery
	4.5.2 Step 2: installing NXP-NCI delivery
	4.5.3 Step 3: updating configuration files
	4.5.4 Step 4: adding NFC to the build
	4.5.5 Step 5: changing device owner and permissions
	4.5.6 Step 6: building and installing NFC
	4.5.7 Step 7: verifying NFC functionality

	4.6 Android Marshmallow
	4.6.1 Step 1: retrieving NXP-NCI NFC delivery
	4.6.2 Step 2: installing NXP-NCI delivery
	4.6.3 Step 3: updating configuration files
	4.6.4 Step 4: adding NFC to the build
	4.6.5 Step 5: changing device owner and permissions
	4.6.6 Step 6: building and installing NFC
	4.6.7 Step 7: verifying NFC functionality

	4.7 Android Lollipop
	4.7.1 Step 1: retrieving NXP-NCI NFC delivery
	4.7.2 Step 2: installing NXP-NCI delivery
	4.7.3 Step 3: updating configuration files
	4.7.4 Step 4: adding NFC to the build
	4.7.5 Step 5: changing device owner and permissions
	4.7.6 Step 6: building and installing NFC
	4.7.7 Step 7: verifying NFC functionality

	4.8 Android KitKat
	4.8.1 Step 1: getting the release package
	4.8.2 Step 2: merging files
	4.8.3 Step 3: selecting the NFC Controller
	4.8.4 Step 4: adding NFC to the build
	4.8.5 Step 5: changing device owner and permissions
	4.8.6 Step 6: building and installing NFC
	4.8.7 Step 7: verifying NFC functionality

	4.9 Others Android versions

	5 Configuration files
	5.1 Android R, Q and Pie
	5.2 Android Oreo
	5.3 Android Nougat and previous versions

	6 Factory test native application
	7 Troubleshooting
	7.1 Device node rights
	7.2 Configuration files
	7.3 NXP’s NFC library
	7.4 NFC Controller choice
	7.5 Missing modules
	7.6 VTS testing
	7.6.1 Wrong interface
	7.6.2 Missing declaration
	7.6.3 Wrong vendor properties namespace

	8 Legal information
	Tables
	Figures
	Contents

